Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Biomater ; 9(4): 219-237, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33206319

RESUMO

The naturally obtained protein Bombyxmori silk is a biocompatible polymer with excellent mechanical properties and have the potential in controlled drug delivery applications. In this work, we have demonstrated dielectric barrier discharge (DBD) oxygen (O2) plasma surface modified electrospun Bombyxmori silk/Amoxicillin hydrochloride trihydrate (AMOX)/polyvinyl alcohol (PVA) nanofibers for drug release applications with controlled plasma treatment duration (1-10 min). The findings indicate that plasma treated electrospun nanofibers for 1-3 min exhibited significant enhancement in tensile strength, Young's modulus, wettability and surface energy. The plasma treated electrospun nanofibers for 1-5 min showed remarkable increase in AMOX released rate, whereas the electrospun nanofibers treated with plasma irradiation beyond 5 min showed only marginal increase. Moreover, the plasma treated nanofibers also exhibited good antibacterial activity against both E. coli (gram negative) and S. aureus (gram positive) bacteria. The untreated and the plasma treated silk/AMOX/PVA electrospun nanofibers for 1-3 min showed enhanced viability of primary adipose derived mesenchymal stem cells (ADMSCs) growth on them and much less hemolysis activity (< 5%). The in vitro biocompatibility of various electrospun nanofibers were further corroborated by live/dead imaging and cytoskeletal architecture assessment demonstrating enhanced cell adhesion and spreading on the plasma treated nanofibers for 1-3 min. The findings of the present study suggest that the silk/AMOX/PVA electrospun nanofibers with plasma treatment (1-3 min) due to their enhanced drug release ability and biocompatibility can be used as potential wound dressing applications.

2.
Food Res Int ; 136: 109599, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846623

RESUMO

In the present study, an innovative cold plasma treatment was used as a tool to fortify the white rice. The amounts of ferrous sulphate and ascorbic acid were optimized for improving the bioavailability of iron. White rice samples were treated with plasma at a constant voltage of 20 kV for varying time (10 min and 15 min). The exposure time of plasma was selected based on the surface characteristics, hydrophilicity and thermal properties. Significant improvement was observed in the characteristics of hydrophilicity, surface energy, cooking time and hardness of plasma-treated rice. Plasma treated rice was fortified with the optimum concentrations of iron and ascorbic acid solution. Optimum concentrations of iron and ascorbic acid per 100 g of rice (862.93 mg and 1398.27 mg) were found by conducting experiments using Central Composite Design of Response Surface Methodology. Further, rice was blended with untreated rice in the ratio of 1:100 and 1:200 and was packed in LDPE and PP pouches and was stored at ambient temperature for further storage analysis. The in vitro bioavailability of iron was significantly higher in the plasma-treated fortified rice at both 1.35 and 7.5 pH than in the control sample, and plasma treatment significantly reduced the rate of oxidation of iron during storage.


Assuntos
Oryza , Gases em Plasma , Disponibilidade Biológica , Alimentos Fortificados , Ferro
3.
J Biomater Sci Polym Ed ; 30(13): 1142-1160, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112449

RESUMO

The current study is designed to develop mechanically strong chitosan (Cs) coated silk based drug delivery system loaded with amoxicillin trihydrate (AMOX). For this purpose, surface modification of Antherarea assama silk fibroin (AASF) yarn is carried out using dielectric barrier discharge (DBD) oxygen (O2) plasma at atmospheric pressure followed by coating with drug incorporated Cs (AASF/O2/Cs-AMOX). It is observed that O2 plasma treatment results in altering surface chemistry and morphology of silk fibroin surface which subsequently improves mechanical properties of AASF/O2/Cs-AMOX yarn. The AASF/O2/Cs-AMOX yarn exhibits strong antibacterial activities against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria. In vitro drug release profile reveals biphasic release behavior of AASF/O2/Cs-AMOX yarn consisting of immediate followed by controlled and sustained release of AMOX up to the observation period of 168 hours. MTT cell viability study further reveals that O2 plasma treatment and incorporation of AMOX do not have any adverse effect on cytocompatibility of AASF/O2/Cs-AMOX yarn. Together, all these results suggest that AASF/O2/Cs-AMOX yarn can be explored in treatment of bacterial infected wounds as potential surgical suture.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Quitosana/química , Fibroínas/química , Seda/química , Amoxicilina/química , Liberação Controlada de Fármacos , Oxigênio/química
4.
Int J Biol Macromol ; 114: 1026-1032, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29578008

RESUMO

In this paper, surface of electrospun PVA/Cs nanofibers is modified using dielectric barrier discharge (DBD) plasma and the relationship between the observed mechanical properties and biocompatibility of the nanofibers and plasma-induced surface properties is discussed. Plasma treatment of electrospun PVA/Cs nanofibers is carried out with both inert (argon, Ar) and reactive (oxygen, O2) gases at atmospheric pressure. Incorporation of oxygen-containing polar functional groups on the surface of Ar-plasma treated (PVA/Cs/Ar) and O2-plasma treated (PVA/Cs/O2) nanofibers and increase in surface roughness contribute to the improvement of surface wettability and the decrease of contact angle with water of the nanofibers. Both PVA/Cs/Ar and PVA/Cs/O2 nanofibers show high tensile strength (11.6-15.6%) and Young's modulus (33.8-37.3%) as compared to the untreated one. Experimental results show that in terms of haemolytic activity the PVA/Cs/Ar and PVA/Cs/O2 nanofibers do not cause structural changes of blood cells and meet the biocompatibility requirements for blood-contacting polymeric materials. MTT cell viability results further reveals improvement in biocompatibility of PVA/Cs nanofibers after Ar and O2 plasma treatment. The results suggest that DBD plasma treated electrospun PVA/Cs nanofibers have the potential to be used as wound dressing and scaffolds for tissue engineering.


Assuntos
Quitosana , Teste de Materiais , Nanofibras/química , Álcool de Polivinil , Animais , Argônio/química , Pressão Atmosférica , Linhagem Celular , Quitosana/química , Quitosana/farmacologia , Camundongos , Oxigênio/química , Gases em Plasma/química , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Propriedades de Superfície
5.
Mater Sci Eng C Mater Biol Appl ; 60: 475-484, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706554

RESUMO

Low temperature plasma can effectively tailor the surface properties of natural polymeric biomaterials according to the need for various biomedical applications. Non-mulberry silk, Antheraea assama silk fibroin (AASF) is a natural polymer having excellent biocompatibility and mechanical strength yet unlike mulberry silk, Bombyx mori silk fibroin, has drawn less interest in biomedical research. In the quest for developing as potential biomaterial, surface functionalization of plasma induced chitosan (Cs) grafted AASF ((AASF/O2-CS)g/O2) yarn is carried out using oxygen (O2) plasma. The (AASF/O2-CS)g/O2 yarn exhibits enhanced antithrombogenic property as well as antimicrobial activity against Gram positive (Bacillus subtilis) and Gram negative (Escherichia coli) bacteria as compared to AASF yarn. Moreover, impregnation of antibiotic drug (penicillin G sodium salt, PEN) on (AASF/O2-CS)g/O2 yarn further improves the observed properties. In-vitro hemolysis assay reveals that O2 plasma treatment and subsequent impregnation of PEN do not affect the hemocompatibility of AASF yarn. The present research findings demonstrate that plasma induced grafting of Cs followed by penicillin impregnation could significantly improve the potential applicability of AASF in the field of surgical research.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Fibroínas/química , Animais , Antibacterianos , Fibrinolíticos/química , Seda/química
6.
Surgery ; 159(2): 539-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26328475

RESUMO

BACKGROUND: The quest for developing silk fibroin as a biomaterial for drug release systems continues to draw research interest owing to its impressive mechanical properties as well as biocompatibility and biodegradability. The aim of this study is to develop low-temperature O2 plasma-treated muga (Antheraea assama) silk fibroin (AASF) yarn impregnated with amoxicillin trihydrate as controlled antibiotic-releasing suture (AASF/O2/AMOX) for preventing postoperative site bacterial infection and fast wound healing. METHODS: In this experimental study, AASF and AASF/O2/AMOX sutures are used to close the surgical wounds of adult male Wistar rats of 4 months old and weighing 200-230 g. RESULTS: Surface hydrophilicity induced by O2 plasma results in an increase in drug-impregnation efficiency of AASF/O2 yarn by 16.7%. In vitro drug release profiles show continuous and prolonged release of AMOX from AASF/O2/AMOX yarn up to 336 hours. In vitro hemolysis assay reveals that O2 plasma treatment and subsequent impregnation of AMOX do not affect the heertetmocompatibility of AASF yarn. The AASF/O2/AMOX yarn proves to be effective for in vitro growth inhibition of Staphylococcus aureus and Escherichia coli, whereas AASF offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of AASF/O2/AMOX over AASF yarn through rapid synthesis and proliferation of collagen, hair follicle, and connective tissues. CONCLUSION: Outcomes of this work clearly demonstrate the potential use of AASF/O2/AMOX yarn as a controlled antibiotic-releasing suture biomaterial for superficial surgical applications.


Assuntos
Amoxicilina/uso terapêutico , Antibacterianos/uso terapêutico , Mariposas , Seda , Infecção da Ferida Cirúrgica/prevenção & controle , Suturas , Cicatrização/efeitos dos fármacos , Amoxicilina/farmacologia , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis , Preparações de Ação Retardada , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Técnicas de Sutura , Resultado do Tratamento
7.
Biopolymers ; 101(4): 355-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23913788

RESUMO

Surface modification of silk fibroin (SF) materials using environmentally friendly and non-hazardous process to tailor them for specific application as biomaterials has drawn a great deal of interest in the field of biomedical research. To further explore this area of research, in this report, polypropylene (PP) grafted muga (Antheraea assama) SF (PP-AASF) suture is developed using plasma treatment and plasma graft polymerization process. For this purpose, AASF is first sterilized in argon (Ar) plasma treatment followed by grafting PP onto its surface. AASF is a non-mulberry variety having superior qualities to mulberry SF and is still unexplored in the context of suture biomaterial. AASF, Ar plasma treated AASF (AASFAr) and PP-AASF are subjected to various characterization techniques for better comparison and the results are attempted to correlate with their observed properties. Excellent mechanical strength, hydrophobicity, antibacterial behavior, and remarkable wound healing activity of PP-AASF over AASF and AASFAr make it a promising candidate for application as sterilized suture biomaterial.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Gases em Plasma/química , Polipropilenos/farmacologia , Seda/farmacologia , Esterilização , Suturas , Animais , Bombyx , Cristalização , Escherichia coli/efeitos dos fármacos , Feminino , Masculino , Teste de Materiais , Fenômenos Mecânicos , Testes de Sensibilidade Microbiana , Coelhos , Análise Espectral Raman , Resistência à Tração , Cicatrização/efeitos dos fármacos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...